skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bruns-Smith, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We provide a novel characterization of augmented balancing weights, also known as automatic debiased machine learning. These popular doubly robust estimators combine outcome modelling with balancing weights—weights that achieve covariate balance directly instead of estimating and inverting the propensity score. When the outcome and weighting models are both linear in some (possibly infinite) basis, we show that the augmented estimator is equivalent to a single linear model with coefficients that combine those of the original outcome model with those from unpenalized ordinary least-squares (OLS). Under certain choices of regularization parameters, the augmented estimator in fact collapses to the OLS estimator alone. We then extend these results to specific outcome and weighting models. We first show that the augmented estimator that uses (kernel) ridge regression for both outcome and weighting models is equivalent to a single, undersmoothed (kernel) ridge regression—implying a novel analysis of undersmoothing. When the weighting model is instead lasso-penalized, we demonstrate a familiar ‘double selection’ property. Our framework opens the black box on this increasingly popular class of estimators, bridges the gap between existing results on the semiparametric efficiency of undersmoothed and doubly robust estimators, and provides new insights into the performance of augmented balancing weights. 
    more » « less
    Free, publicly-accessible full text available April 24, 2026